Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys

نویسندگان

  • Eyal Eshed
  • Natalya Larianovsky
  • Alexey Kovalevsky
  • Vladimir Popov
  • Igor Gorbachev
  • Vladimir Popov
  • Alexander Katz-Demyanetz
چکیده

Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution-most likely as a result of the Zr segregation trend not being an equilibrium phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Ca in the Microstructural Evolution and Porosity Analysis of ZK60 Alloy in As-Cast and Extruded Conditions

This research work has been carried out to study the effect of different Ca contents (0.5, 1.0, 1.5, 2.0 and 3.0) on the microstructure and porosity content of ZK60 alloys. The samples were examined by using optical and scanning electron microscopy (SEM) to evaluate the modification efficiency of the alloy with different Ca concentrations. The cast specimens were modified, homogenized and extru...

متن کامل

Effect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy

The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructura...

متن کامل

MICROSTRUCTURE AND PROPERTIES OF COLLOIDAL SILICA BONDED MAGNESITE CASTABLE REFRACTORIES

Abstract: Efforts have been carried out in order to use microsilica to develop a forsterite bond rather than other types of binders in the basic refractory castables. According to the higher drying rate and sinterability of colloidal silica, it has been proposed in the recent years. In the present work, effects of replacement of microsilica by colloidal silica evolution of forsterite bond have ...

متن کامل

Interplay between Lattice Distortions, Vibrations and Phase Stability in NbMoTaW High Entropy Alloys

Refractory high entropy alloys (HEA), such as BCC NbMoTaW, represent a promising materials class for next-generation high-temperature applications, due to their extraordinary mechanical properties. A characteristic feature of HEAs is the formation of single-phase solid solutions. For BCC NbMoTaW, recent computational studies revealed, however, a B2(Mo,W;Nb,Ta)-ordering at ambient temperature. T...

متن کامل

Formation and Disruption of W-Phase in High-Entropy Alloys

High-entropy alloys (HEAs) are single-phase systems prepared from equimolar or near-equimolar concentrations of at least five principal elements. The combination of high mixing entropy, severe lattice distortion, sluggish diffusion and cocktail effect favours the formation of simple phases—usually a bcc or fcc matrix with minor inclusions of ordered binary intermetallics. HEAs have been propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018